IEEE Nanotechnology Council
Advancing Nanotech for Humanity
IEEE

May 1, 2015 – Fluorinated Epitaxial Graphene Diffusion Barrier on Germanium Enables Ge-MOSFET without Unstable Germanium Oxide

Zheng et al. demonstrated Ge-MOSFET with negligible C−V hysteresis, extremely low leakage, and superior equivalent oxide thickness by the aid of a fluorinated epitaxial graphene on Ge as an oxygen diffusion barrier to successfully prevent the formation of unstable germanium oxide between the Ge channel and the HfO2 gate oxide.  Read the original article: Xiaohu Zheng et al., Adv. Funct. Mater. 2015, 25, 1805–1813 (Posted by Yonhua Tzeng)

F-Gr on Ge as Diffusion Barrier

a) Schematic diagram showing the implementation of FGra as the diffusion barrier layer between the Ge substrate and HfO 2 dielectric layer in the Ge-based MOS device: (step 1) direct growth of continuous monolayer graphene on Ge; (step 2) FGra synthesized by exposure to SF 6 plasma; (step 3) dielectric deposition on FGra/Ge by atomic layer deposition; (step 4) MOS device completed by standard semiconductor manufacturing processes. b) Cross-sectional high-resolution TEM of the gate stack showing the absence of interfacial oxide formation in the presence of FGra and schematic diagram showing retarded diffusion in the vicinity of high- k /Ge interface.  (Credit Xiaohu Zheng et al., Adv. Funct. Mater. 2015, 25, 1805–1813 with permission)

Comments are closed.