Category: Nano News
Get the latest updates from Nano News – featuring council announcements, member highlights, and key developments across the global nanotechnology community.
Alice Gaudin et al. used squalenoyl adenosine nanoparticles of the size of ∼120 nm as a neuroprotective drug to deliver therapeutic amounts of drugs by intravenous injection for treating nervous system after stroke and spinal cord injury of mice. Read the original article: Nature Nanotechnology, doi:10.1038/nnano.2014.274 (Posted by Y. Tzeng)
Boyd et al. of California Institute of Technology demonstrated a microwave plasma-enhanced CVD chemistry in gas mixtures of hydrogen, methane, and nitrogen that grows graphene on copper foils at temperatures lower than 420 °C exhibiting sub-nanometer smoothness, excellent crystalline quality, low strain, few defects and room-temperature electron mobility up to (6.0±1.0) × 10000 cm2 V−1 s−1. Read the original article: NATURE COMMUNICATIONS doi:10.1038/ncomms7620 ( Posted by Y. Tzeng)
Te-Fu Yeh et al. of National Cheng Kung University in Tainan, Taiwan invented nitrogen-doped graphene oxide quantum dots containing p-n type photochemical diodes, which catalyze water-splitting under visible-light irradiation mimicking biological photosynthesis. Read the original article and report: Advanced Materials doi/10.1002/adma.201305299, NCKU Research Express (Upper) Nitrogen-doped graphene oxide quantum dots. (Lower) quantum dot p-n diode for water splitting. Credit : Te-Fu Yeh et al., Advanced Materials (Posted by Y. Tzeng)
Pojen Chuang et al. of National Cheng Kung University in Tainan, Taiwan and his co-workers used two quantum point contacts as spin injectors and detectors to achieve complete control of the electron spins (spin injection, manipulation and detection) in a purely electrical all-semiconductor spin field-effect transistor which is compatible with large-scale integration and promising for future spintronics based information processing. Read the original article: Pojen Chuang, Sheng-Chin Ho, L. W. [...]
Kolkowitz et al. of Harvard University used nitrogen-vacancy centers in diamond to make single-spin qubits for measuring Johnson noise thermally induced in a conductive silver film in the vicinity indicating that nanoscale quantum systems may be controlled by nearby electrodes. Read the original article: Thermally induced electrical currents, known as Johnson noise, cause fluctuating electric and magnetic fields in proximity to a conductor. These fluctuations are intrinsically related to the conductivity [...]